Transcriptional Fingerprint of Hypomyelination in Zfp191null and Shiverer (Mbpshi) Mice

Author:

Aaker Joshua D.1,Elbaz Benayahu1,Wu Yuwen1,Looney Timothy J.2,Zhang Li2,Lahn Bruce T.2,Popko Brian1

Affiliation:

1. Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, IL, USA

2. Department of Human Genetics, The University of Chicago, IL, USA

Abstract

The transcriptional program that controls oligodendrocyte maturation and central nervous system (CNS) myelination has not been fully characterized. In this study, we use high-throughput RNA sequencing to analyze how the loss of a key transcription factor, zinc finger protein 191 (ZFP191), results in oligodendrocyte development abnormalities and CNS hypomyelination. Using a previously described mutant mouse that is deficient in ZFP191 protein expression ( Zfp191 null), we demonstrate that key transcripts are reduced in the whole brain as well as within oligodendrocyte lineage cells cultured in vitro. To determine whether the loss of myelin seen in Zfp191 null mice contributes indirectly to these perturbations, we also examined the transcriptome of a well-characterized mouse model of hypomyelination, in which the myelin structural protein myelin basic protein (MBP) is deficient. Interestingly, Mbp shi (shiverer) mice had far fewer transcripts perturbed with the loss of myelin alone. This study demonstrates that the loss of ZFP191 disrupts expression of genes involved in oligodendrocyte maturation and myelination, largely independent from the loss of myelin. Nevertheless, hypomyelination in both mouse mutants results in the perturbation of lipid synthesis pathways, suggesting that oligodendrocytes have a feedback system that allows them to regulate myelin lipid synthesis depending on their myelinating state. The data presented are of potential clinical relevance as the human orthologs of the Zfp191 and MBP genes reside on a region of Chromosome 18 that is deleted in childhood leukodystrophies.

Publisher

SAGE Publications

Subject

Clinical Neurology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3