The Contribution of Astrocyte and Neuronal Panx1 to Seizures Is Model and Brain Region Dependent

Author:

Obot Price1,Velíšek Libor123,Velíšková Jana124,Scemes Eliana1ORCID

Affiliation:

1. Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, United States

2. Department of Neurology, New York Medical College, Valhalla, New York, United States

3. Department of Pediatrics, New York Medical College, Valhalla, New York, United States

4. Department of Obstetrics & Gynecology, New York Medical College, Valhalla, New York, United States

Abstract

Pannexin1 (Panx1) is an ATP release channel expressed in neurons and astrocytes that plays important roles in CNS physiology and pathology. Evidence for the involvement of Panx1 in seizures includes the reduction of epileptiform activity and ictal discharges following Panx1 channel blockade or deletion. However, very little is known about the relative contribution of astrocyte and neuronal Panx1 channels to hyperexcitability. To this end, mice with global and cell type specific deletion of Panx1 were used in one in vivo and two in vitro seizure models. In the low-Mg2+ in vitro model, global deletion but not cell-type specific deletion of Panx1 reduced the frequency of epileptiform discharges. This reduced frequency of discharges did not impact the overall power spectra obtained from local field potentials. In the in vitro KA model, in contrast, global or cell type specific deletion of Panx1 did not affect the frequency of discharges, but reduced the overall power spectra. EEG recordings following KA-injection in vivo revealed that although global deletion of Panx1 did not affect the onset of status epilepticus (SE), SE onset was delayed in mice lacking neuronal Panx1 and accelerated in mice lacking astrocyte Panx1. EEG power spectral analysis disclosed a Panx1-dependent cortical region effect; while in the occipital region, overall spectral power was reduced in all three Panx1 genotypes; in the frontal cortex, the overall power was not affected by deletion of Panx1. Together, our results show that the contribution of Panx1 to ictal activity is model, cell-type and brain region dependent.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3