Astrocyte-Selective Volume Increase in Elevated Extracellular Potassium Conditions Is Mediated by the Na+/K+ ATPase and Occurs Independently of Aquaporin 4

Author:

Walch Erin12ORCID,Murphy Thomas R.3ORCID,Cuvelier Nicholas34,Aldoghmi Murad3,Morozova Cristine35,Donohue Jordan34ORCID,Young Gaby35,Samant Anuja35,Garcia Stacy35,Alvarez Camila35,Bilas Alex34,Davila David3,Binder Devin K.124,Fiacco Todd A.234ORCID

Affiliation:

1. Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, United States

2. Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, United States

3. Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States

4. Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States

5. Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States

Abstract

Astrocytes and neurons have been shown to swell across a variety of different conditions, including increases in extracellular potassium concentration (^[K+]o). The mechanisms involved in the coupling of K+ influx to water movement into cells leading to cell swelling are not well understood and remain controversial. Here, we set out to determine the effects of ^[K+]o on rapid volume responses of hippocampal CA1 pyramidal neurons and stratum radiatum astrocytes using real-time confocal volume imaging. First, we found that elevating [K+]o within a physiological range (to 6.5 mM and 10.5 mM from a baseline of 2.5 mM), and even up to pathological levels (26 mM), produced dose-dependent increases in astrocyte volume, with absolutely no effect on neuronal volume. In the absence of compensating for addition of KCl by removal of an equal amount of NaCl, neurons actually shrank in ^[K+]o, while astrocytes continued to exhibit rapid volume increases. Astrocyte swelling in ^[K+]o was not dependent on neuronal firing, aquaporin 4, the inwardly rectifying potassium channel Kir 4.1, the sodium bicarbonate cotransporter NBCe1, , or the electroneutral cotransporter, sodium-potassium-chloride cotransporter type 1 (NKCC1), but was significantly attenuated in 1 mM barium chloride (BaCl2) and by the Na+/K+ ATPase inhibitor ouabain. Effects of 1 mM BaCl2 and ouabain applied together were not additive and, together with reports that BaCl2 can inhibit the NKA at high concentrations, suggests a prominent role for the astrocyte NKA in rapid astrocyte volume increases occurring in ^[K+]o. These findings carry important implications for understanding mechanisms of cellular edema, regulation of the brain extracellular space, and brain tissue excitability.

Funder

UCR Academic Senate Committee on Research

NIH NINDS

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3