Substantia Nigra Abnormalities Provide New Insight on the Neural Mechanisms Underlying the Sleep-Arousal Phase Dysfunctions in Sudden Infant Death Syndrome

Author:

Lavezzi Anna M.1ORCID,Mehboob Riffat12,Alfonsi Graziella1,Ferrero Stefano134

Affiliation:

1. “Lino Rossi” Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy

2. Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan

3. Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy

4. Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy

Abstract

The purpose of this study was to research possible developmental alterations of the substantia nigra (SN) in sudden infant death syndrome (SIDS), a syndrome frequently attributed to arousal failure from sleep. Brain stems of 46 victims of sudden infant death, aged from 1 to about 7 months (4 to 30 postnatal weeks), were investigated. Twenty-six of these cases were diagnosed as SIDS, due to the lack of any pathological finding, while the remaining 20 cases in which the cause of death was determined at autopsy served as controls. Maternal smoking was reported in 77% of SIDS and 10% of controls. Histopathological examination of the SN was done on 5-µm-thick sections of caudal midbrain stained with both hematoxylin-eosin and Klüver-Barrera. Densitometry, immunohistochemistry and histochemistry were applied to highlight the neuronal concentration, the tyrosine hydroxylase (TH) expression, and the presence of neuromelanin (NM) in this structure. Hypoplasia of the pars compacta portion of the SN was observed in 69% of SIDS but never in controls; TH expression was significantly higher in controls than in SIDS; and NM was observed only in 4 infants of the control group but not in SIDS. A significant correlation was found between SIDS, hypoplasia/low neuronal density, low TH expression in the pars compacta, and maternal smoking. Because the SN pars compacta, being the major dopamine brain center, controls many functions, including the sleep-arousal phase, its alterations, especially concurrently with smoking exposure, may contribute to explain the pathogenesis of SIDS that occur in the great part of cases at awakening from sleep.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3