Analyzing Purchase Decisions Using Dynamic Location Data

Author:

Shoshani TalORCID,Zubcsek Peter PalORCID,Reichman Shachar

Abstract

Retailers’ efforts to monetize consumer location data remain dominated by inefficient protocols (e.g., geofencing) that customize marketing interactions based solely on app users’ current location. Although extant trajectory mining techniques can remedy these shortcomings, they require high-frequency location data, which poses severe risks to consumers’ privacy. The authors present a novel method to extract marketing value from low-granularity urban mobility data and demonstrate its use in analyzing gas station choice to value customers. The data, also used to infer gas station visits, contain 1.06 million location records on nearly 27,000 devices observed near selected retailers including gas stations during a six-month period in Staten Island, New York. The authors pool consumers’ mobility trajectories from several days to dynamically calculate the distance of stores from consumers’ anticipated trajectories. They then supplement the data with station-level daily fuel prices and estimate a conditional logit model to assess how consumers trade off gas prices versus store distance. In addition to a generally high station loyalty, the authors find that consumers strongly prefer not to deviate far from their common trajectories for fueling trips. Applying their methods in a predictive context, the authors infer the value of newly acquired customers to the studied gas stations to be between $3.00 and $7.59.

Funder

Israel Science Foundation

Publisher

SAGE Publications

Subject

Marketing,Business and International Management

Reference67 articles.

1. Evidence for a conserved quantity in human mobility

2. Amadio L. (2022), “Kochava Unveils the Future of Privacy-Preserving Location Intelligence with Privacy Block,” Kochava, press release (September 19), https://www.kochava.com/kochava-unveils-the-future-of-privacy-preserving-location-intelligence-with-privacy-block/.

3. Mobile Promotions: A Framework and Research Priorities

4. Mobile Ad Effectiveness: Hyper-Contextual Targeting with Crowdedness

5. Estimating Heterogeneous Consumer Preferences for Restaurants and Travel Time Using Mobile Location Data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3