Deep Nostalgia: Remediated memory, algorithmic nostalgia and technological ambivalence

Author:

Kidd Jenny1ORCID,Nieto McAvoy Eva1

Affiliation:

1. Cardiff University, UK

Abstract

Digital recreations of the past, and of the deceased, are part of the Internet’s present. They circulate within social networks where logics of connection and connectivity underpin increasingly performative memory work. In this article we explore these developments through a case study of the MyHeritage deep learning feature, Deep Nostalgia. Our analysis is informed by a close critical study of Deep Nostalgia creations, and discourses circulating around them, shared on Twitter during the two-week period following its launch, February 2021 (n.6935). We examine how memory is evoked, framed, re-worked and distorted through algorithmic processes, and within social networks in particular, and explore what this tells us about peoples' need to connect with their pasts. First, we analyse how the shift from photo to video ‘revives’ the dead via a process that we have termed ‘remediated memory’. Second, we explore the affective dimensions and resonances of Deep Nostalgia creations. In doing so, we introduce the concept of ‘algorithmic nostalgia’ to describe the ways nostalgia is generated, organised and exploited through Deep Nostalgia’s automated and recursive algorithmic mechanisms. Third, we interrogate the ways social media logics shape the use and influence of these outputs. Our study’s scholarly contribution is at the intersection of memory, automation, and algorithms. We highlight the importance of studying the ambivalence of emerging media at their nexus with memory studies and, critically, of attending to the ways corporate interests increasingly shape – and assimilate – these activities.

Publisher

SAGE Publications

Subject

Arts and Humanities (miscellaneous),Communication

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3