Re-enacting machine learning practices to enquire into the moral issues they pose

Author:

John-Mathews Jean-Marie1ORCID,De Mourat Robin2,Ricci Donato2,Crépel Maxime2

Affiliation:

1. Université Paris-Saclay, France

2. Sciences Po, Paris

Abstract

As the number of ethical incidents associated with Machine Learning (ML) algorithms increases worldwide, many actors are seeking to produce technical and legal tools to regulate the professional practices associated with these technologies. However these tools, generally grounded either on lofty principles or on technical approaches, often fail at addressing the complexity of the moral issues that ML-based systems are triggering. They are mostly based on a ‘principled’ conception of morality where technical practices cannot be seen as more than mere means to be put at the service of more valuable moral ends. We argue that it is necessary to localise ethical debates within the complex entanglement of technical, legal and organisational entities from which ML moral issues stem. To expand the repertoire of the approaches through which these issues might be addressed, we designed and tested an interview protocol based on the re-enactment of data scientists’ daily ML practices. We asked them to recall and describe the crafting and choosing of algorithms. Then, our protocol added two reflexivity-fostering elements to the situation: technical tools to assess algorithms’ morality, based on incorporated ‘ethicality’ indicators; and a series of staged objections to the aforementioned technical solutions to ML moral issues, made by factitious actors inspired by the data scientists’ daily environment. We used this protocol to observe how ML data scientists uncover associations with multiple entities, to address moral issues from within the course of their technical practices. We thus reframe ML morality as an inquiry into the uncertain options that practitioners face in the heat of technical activities. We propose to institute moral enquiries both as a descriptive method serving to delineate alternative depictions of ML algorithms when they are affected by moral issues and as a transformative method to propagate situated critical technical practices within ML-building professional environments.

Funder

Chaire Good In Tech

Publisher

SAGE Publications

Subject

Arts and Humanities (miscellaneous),Communication

Reference47 articles.

1. My Whole Life in Telephones

2. Computation and Human Experience

3. Blacklists and black holes

4. Boltanski L (2011) On critique: a sociology of emancipation. Available at: https://books.google.com/books?hl=fr&lr=&id=JcUrqIJfkEIC&oi=fnd&pg=PR1&dq=Boltanski+%22on+critique%22&ots=UnJNnFVGff&sig=tuoBsEot-gfXJ9s6KWV65CWFQY0. (accessed 3 June 2021).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fairness Hacking: The Malicious Practice of Shrouding Unfairness in Algorithms;Philosophy & Technology;2024-01-06

2. Pluralising critical technical practice;Convergence: The International Journal of Research into New Media Technologies;2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3