Synthetic Hammerhead Ribozymes as Tools in Gene Expression

Author:

lyngstadaas S. Petter1

Affiliation:

1. Oral Research Laboratory, Faculty of Dentistry, University of Oslo, PO Box 1109, Blindern, N-0317 Oslo, Norway;

Abstract

The assessment of genetic controls for sequential developmental processes such as tooth formation and biomineralization is often difficult in transgenic "knockout" models, where phenotypes reflect only the permanent eradication of a gene, and reveal little about the dynamic range of expression for the gene(s) involved. One promising strategy to overcome this problem is through the use of ribozymes, a class of metalloenzymes made entirely of ribonucleic acid (RNA), that are capable of cleaving other RNA molecules in a catalytic fashion. Their activity can be targeted against specific mRNAs by selection of unique sequences flanking a conserved catalytic motif. In synthetic ribozymes, specificity, stability, and cell permeability can be dramatically improved by the incorporation of chemically modified ribonucleotides. This review focuses on the design and application of hammerhead ribozymes, the best-known and most widely used class of RNA-based enzymes. So far, except for a few conserved structures at the catalytic core, no one particular model or superior ribozyme design has been identified. It may well be that each cell, tissue, and organism has different requirements for the uptake, activity, and stability of hammerhead ribozymes. However, designed ribozymes can be highly effective agents for timed and localized elimination of gene products. As the 3D structures of active hammerhead molecules are revealed, more effective ribozymes will be developed. Today, developments in ribozyme-mediated sequence-specific blocking of gene expression hold great promise for active RNA enzymes as tools in biomolecular research and for eliminating unwanted gene expression in human diseases.

Publisher

SAGE Publications

Subject

General Dentistry,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3