Dynamic Interactions and the Evolutionary Genetics of Dental Patterning

Author:

Weiss K.M.1,Stock D.W.1,Zhao Z.1

Affiliation:

1. Department of Anthropology, and Graduate Program in Cell and Developmental Biology, Penn State University, 409 Carpenter, University Park, Pennsylvania 16802; To whom correspondence should be addressed

Abstract

The mammalian dentition is a segmental, or periodically arranged, organ system whose components are arrayed in specific number and in regionally differentiated locations along the linear axes of the jaws. This arrangement evolved from simpler dentitions comprised of many single-cusp teeth of relatively indeterminate number. The different types of mammalian teeth have subsequently evolved as largely independent units. The experimentally documented developmental autonomy of dental primordia shows that the basic dental pattern is established early in embryogenesis. An understanding of how genetic patterning processes may work must be consistent with the different modes of development, and partially independent evolution, of the upper and lower dentition in mammals. The periodic nature of the location, number, and morphological structure of teeth suggests that processes involving the quantitative interaction of diffusible signaling factors may be involved. Several extracellular signaling molecules and their interactions have been identified that may be responsible for locating teeth along the jaws and for the formation of the incisor field. Similarly, the wavelike expression of signaling factors within developing teeth suggests that dynamic interactions among those factors may be responsible for crown patterns. These factors seem to be similar among different tooth types, but the extent to which crown differences can be explained strictly in terms of variation in the parameters of interactions among the same genes, as opposed to tooth-type-specific combinatorial codes of gene expression, is not yet known. There is evidence that combinatorial expression of intracellular transcription factors, including homeobox gene families, may establish domains within the jaws in which different tooth types are able to develop. An evolutionary perspective can be important for our understanding of dental patterning and the designing of appropriate experimental approaches, but dental patterns also raise basic unresolved questions about the nature of the evolutionary assumptions made in developmental genetics.

Publisher

SAGE Publications

Subject

General Dentistry,Otorhinolaryngology

Reference183 articles.

1. Combinatorial expression of three zebrafish genes related to distal- less: part of a homeobox gene code for the head

2. HedgehogandBmpGenes Are Coexpressed at Many Diverse Sites of Cell–Cell Interaction in the Mouse Embryo

3. Burke A., Nelson C., Morgan B., Tabin C. (1995). Hox genes and the evolution of vertebrate axial morphology. Development 121:333-346.

4. Butler P. (1939). Studies of the mammalian dentition. Differentiation of the post-canine dentition. Proc Zool Soc Lond 109:1-36.

5. THE ONTOGENY OF MOLAR PATTERN

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3