Complement Biosynthesis in the Central Nervous System

Author:

Barnum S.R.1

Affiliation:

1. Department of Microbiology and Division of Clinical Immunology and Rheumatology, 1918 University Blvd., BHS/306, University of Alabama at Birmingham, Birmingham, Alabama 35294

Abstract

Complement is an important effector arm of the human immune response. Binding of proteolytic fragments derived from activation of complement by specific receptors leads to responses as diverse as inflammation, opsonization, and B-cell activation. The importance of characterizing the expression and regulation of complement in the CNS is highlighted by growing evidence that complement plays a significant role in the pathogenesis of a variety of neurological diseases, such as multiple sclerosis and Alzheimer's disease. In vitro studies have demonstrated that astrocytes, the predominant glial cell type in the brain, are capable of expressing or producing a majority of the components of the complement system. Expression of many complement proteins synthesized by astrocytes is regulated by both pro- and anti-inflammatory cytokines, many of which are also produced by several cell types in the CNS. In addition to astrocytes, ependymal cells, endothelial cells, microglia, and neurons have recently been shown to synthesize various complement proteins or express complement receptors on their cell surfaces. Together, these studies demonstrate that several cell types throughout the brain have the potential to express complement and, in many cases, increase expression in response to mediators of the acute phase response. These studies suggest that complement may play a greater role in CNS immune responses than previously thought, and pave the way for better understanding of the dynamics of complement expression and regulation in vivo. Such understanding may lead to therapeutic manipulation of complement host defense functions in a variety of inflammatory and degenerative diseases in the CNS.

Publisher

SAGE Publications

Subject

General Dentistry,Otorhinolaryngology

Reference101 articles.

1. Inflammatory mechanisms in Alzheimer's disease: implications for therapy

2. Alper CA, Rosen FS (1976). Genetics of the human complement system. Adv Hum Genet 7:141-188.

3. The role of complement component C3b and its receptors in sperm-oocyte interaction.

4. Annunziata P., Volpi N. (1985). High levels of C3c in the cerebrospinal fluid from amyotrophic lateral sclerosis patients. Acta Neurol Scand 72:61-64.

5. Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3