Actions of Hedgehog Proteins on Skeletal Cells

Author:

Iwamoto M.1,Enomoto-Iwamoto M.1,Kurisu K.1

Affiliation:

1. Departments of Oral Anatomy & Developmental Biology and 1Biochemistry, Osaka University Faculty of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565, Japan

Abstract

Recent advances in developmental and molecular biology during embryogenesis and organogenesis have provided new insights into the mechanism of bone formation. Members of the hedgehog gene family were initially characterized as patterning factors in embryonic development, but recently they have been shown to regulate skeletal formation in vertebrates. The amino terminal fragment of Sonic hedgehog (Shh-N), which is an active domain of Shh, has the ability to induce ectopic cartilage and bone formation in vivo. Shh-N stimulates chondrogenic differentiation in cultures of chondrogenic cell line cells in vitro and inhibits chondrogenesis in primary limb bud cells. These findings suggest that the regulation of chondrogenesis by hedgehog proteins depends on the cell populations being studied. Indian hedgehog (Ihh) is prominently expressed in developing cartilage. Ectopic expression of Ihh decreases type X collagen expression and induces the up-regulation of parathyroid hormone-related peptide (PTHrp) gene expression in perichondrium cells. A negative feedback loop consisting of Ihh and PTHrp, induced by Ihh, appears to regulate the rate of chondrocyte maturation. The direct actions of Shh and Ihh on stimulation of osteoblast differentiation are evidenced by the findings that these factors stimulate alkaline phosphatase activity in cultures of pluripotent mesenchymal cell line cells and osteoblastic cells and that these cells express putative receptors of hedgehog proteins. In conclusion, hedgehog proteins seem to be significantly involved in skeletal formation through multiple actions on chondrogenic mesenchymal cells, chondrocytes, and osteogenic cells.

Publisher

SAGE Publications

Subject

General Dentistry,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3