Glucose and Lactate Metabolism By Actinomyces Naeslundii

Author:

Takahashi N.1,Yamada T.1

Affiliation:

1. Department of Oral Biochemistry, Tohoku University School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan

Abstract

Actinomyces are among the predominant bacteria in the oral microflora. This review discusses the glucose and lactate metabolism of A ctinomyces naeslundii and its ecological significance in dental plaque. This bacterium has the Embden-Meyerhof-Parnas (EMP) pathway as the main route to degrade glucose. The EMP pathway-derived metabolic intermediates, phosphoenolpyruvate (PEP) and pyruvate, are further converted into different end-products, depending on the environment. Under anaerobic conditions in the absence of bicarbonate, the pyruvate is converted into lactate by a lactate dehydrogenase. In the presence of bicarbonate, the PEP is combined with bicarbonate and then converted into succinate through the succinate pathway, while the pyruvate is converted into formate and acetate through the pyruvate formate-lyase pathway. Under aerobic conditions, the pyruvate liberates acetate and CO2 through a pathway initiated by a pyruvate dehydrogenase. A. naeslundii strains also degrade lactate, aerobically, to acetate and CO2 through the conversion of lactate into pyruvate by a NADindependent lactate dehydrogenase. These strains also synthesize glycogen from a glycolytic intermediate, glucose 6-phosphate. Besides atmospheric conditions and bicarbonate, the intracellular reduction-oxidation potential, carbohydrate concentration, and environmental pH also modulate the metabolism of A. naeslundii. Some of the phosphorylating enzymes involved in A. naeslundii metabolism —e.g., GTP/polyphosphate (PPn)-dependent glucokinase, pyrophosphate (PPi)-dependent phosphofructokinase, UDP-glucose pyrophosphorylase, and GDP/IDP-dependent PEP carboxykinase-are unique to A. naeslundii and have not been found in other oral bacteria. The utilization of PPn and PPi as phosphoryl donors, together with glycogen synthesis and lactate utilization, could contribute to the efficient energy metabolism found in A. naeslundii. Through this flexible and efficient metabolic capacity, A. naeslundii can adapt to fluctuating environments and compete with other bacteria in dental plaque. Further, this bacterium may modify the dental plaque environment and promote the microbial population shifts in dental plaque.

Publisher

SAGE Publications

Subject

General Dentistry,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3