Affiliation:
1. Department of Biomineralization & Harvard-Forsyth, Department of Oral Biology, Forsyth Institute, 140 Fenway, Boston, Massachusetts 02115, USA
2. University of Texas School of Dentistry, Health Science Center at San Antonio, Department of Pediatric Dentistry, 7703 Floyd Curl Drive, San Antonio, Texas 78284-7888, USA
Abstract
For almost three decades, proteinases have been known to reside within developing dental enamel. However, identification and characterization of these proteinases have been slow and difficult, because they are present in very small quantities and they are difficult to purify directly from the mineralizing enamel. Enamel matrix proteins such as amelogenin, ameloblastin, and enamelin are cleaved by proteinases soon after they are secreted, and their cleavage products accumulate in the deeper, more mature enamel layers, while the full-length proteins are observed only at the surface. These results suggest that proteinases are necessary for "activating" enamel proteins so the parent proteins and their cleavage products may perform different functions. A novel matrix metalloproteinase named enamelysin (MMP-20) was recently cloned from tooth tissues and was later shown to localize primarily within the most recently formed enamel. Furthermore, recombinant porcine enamelysin was demonstrated to cleave recombinant porcine amelogenin at virtually all of the sites that have previously been described in vivo. Therefore, enamelysin is at least one enzyme that may be important during early enamel development. As enamel development progresses to the later stages, a profound decrease in the enamel protein content is observed. Proteinases have traditionally been assumed to degrade the organic matrix prior to its removal from the enamel. Recently, a novel serine proteinase named enamel matrix serine proteinase-1 (EMSP1) was cloned from enamel organ epithelia. EMSP1 localizes primarily to the early maturation stage enamel and may, therefore, be involved in the degradation of proteins prior to their removal from the maturing enamel. Other, as yet unidentified, proteinases and proteinase inhibitors are almost certainly present within the forming enamel and await discovery.
Subject
General Dentistry,Otorhinolaryngology
Cited by
240 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献