Affiliation:
1. Department of Periodontology, OSU College of Dentistry, P.O. Box 198, Postle Hall, Columbus, OH 43210
2. Department of Oral Biology, Room 109, Foster Hall, SUNY/Buffalo, Buffalo, NY 14214
Abstract
Previously, we reported that a membrane-bound epithelial enzyme, transglutaminase (TGase), catalyzes the covalent cross-linking of acidic proline-rich proteins (APRPs) to surface proteins of buccal epithelial cells (BECs). The purpose of this study was twofold: (1) to provide evidence that TGase stabilizes C. albicans adhesion by covalently cross-linking C. albicans and BEC surface proteins and (2) to implicate PRPs in the modulation of this adhesive mechanism. The reactivity of candidal cell wall proteins with TGase was assessed in two separate experiments. Initially, following incubation with native BECs, the cross-linking of iodinated candidal cell wall proteins into high-molecular-weight complexes, as shown by SDS-PAGE/ autoradiography, was inhibited by the TGase inhibitor iodoacetamide. Additionally, [14C]putrescine in the presence of purified TGase, but not [14C]putrescine alone, was shown by SDS-PAGE/fluorography to be cross-linked into surface proteins of both morphogenetic forms (blastospore > hyphal forms) of C. albicans. In adherence assays, a component of both blastospore and hyphal form Candida/BEC adherence was shown to be resistant to detachment by heating adherent cells in 1% SDS at 100°C. However, pretreatment of BECs with iodoacetamide decreased SDS resistant adherence of both forms of C. albicans by =75%. When incubated with [125I]APRPs and purified TGase, both morphogenetic forms of C. albicans bound dramatically more APRP than controls without TGase. [125I]APRP binding in experimental, but not control, samples was resistant to repeated extraction (48 h) with 4% SDS/10% β-mercaptoethanol at 65°C, suggesting that [125I]APRPs were cross-linked to the Candida surface. SDS-PAGE/fluorography was used to verify that APRPs, in Lyticase digests of Candida cell walls, were cross-linked into a high-molecular-weight complex. These experiments suggest that epithelial TGase may stabilize Candida adherence by cross-linking Candida and BEC surface proteins. Additionally, because TGase cross-links APRPs to candidal and epithelial surface proteins, APRPs may interfere with TGase catalyzed mechanisms of adhesion. Supported by USPHS grants DE00185, DE07585, and OSU Seed grant.
Subject
General Dentistry,Otorhinolaryngology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献