Airborne Aerosol Generation During Endonasal Procedures in the Era of COVID-19: Risks and Recommendations

Author:

Workman Alan D.12,Jafari Aria12,Welling D. Bradley12,Varvares Mark A.12,Gray Stacey T.12,Holbrook Eric H.12,Scangas George A.12,Xiao Roy12,Carter Bob S.23,Curry William T.23,Bleier Benjamin S.12

Affiliation:

1. Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA

2. Harvard Medical School, Boston, Massachusetts, USA

3. Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA

Abstract

Objective In the era of SARS-CoV-2, the risk of infectious airborne aerosol generation during otolaryngologic procedures has been an area of increasing concern. The objective of this investigation was to quantify airborne aerosol production under clinical and surgical conditions and examine efficacy of mask mitigation strategies. Study Design Prospective quantification of airborne aerosol generation during surgical and clinical simulation. Setting Cadaver laboratory and clinical examination room. Subjects and Methods Airborne aerosol quantification with an optical particle sizer was performed in real time during cadaveric simulated endoscopic surgical conditions, including hand instrumentation, microdebrider use, high-speed drilling, and cautery. Aerosol sampling was additionally performed in simulated clinical and diagnostic settings. All clinical and surgical procedures were evaluated for propensity for significant airborne aerosol generation. Results Hand instrumentation and microdebridement did not produce detectable airborne aerosols in the range of 1 to 10 μm. Suction drilling at 12,000 rpm, high-speed drilling (4-mm diamond or cutting burs) at 70,000 rpm, and transnasal cautery generated significant airborne aerosols ( P < .001). In clinical simulations, nasal endoscopy ( P < .05), speech ( P < .01), and sneezing ( P < .01) generated 1- to 10-μm airborne aerosols. Significant aerosol escape was seen even with utilization of a standard surgical mask ( P < .05). Intact and VENT-modified (valved endoscopy of the nose and throat) N95 respirator use prevented significant airborne aerosol spread. Conclusion Transnasal drill and cautery use is associated with significant airborne particulate matter production in the range of 1 to 10 μm under surgical conditions. During simulated clinical activity, airborne aerosol generation was seen during nasal endoscopy, speech, and sneezing. Intact or VENT-modified N95 respirators mitigated airborne aerosol transmission, while standard surgical masks did not.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3