Affiliation:
1. Los Angeles, California
Abstract
We examined the ultrastructural distribution of calcitonin gene-related peptide immunoreactivity in the peripheral vestibular system of the chinchilla to study the Innervation patterns of this efferent neuropeptide. Immunoelectron microscopic localization of calcitonin gene-related peptide immunoreactive terminals in the maculae and cristae revealed an extensive innervation pattern on the afferent vestibular pathway. Calcitonin gene-related peptide immunoreactive terminals made synaptic contacts with the unmyelinated portions of the primary afferent vestibular dendrites innervating both type I and type II hair cells. Abundant synaptic contact between calcitonin gene-related peptide immunoreactive terminals and the chalices surrounding type I hair cells was observed. Direct contact between calcitonin gene-related peptide immunoreactive terminals and type II hair cells was observed. In addition, vesiculated efferent terminals without calcitonin gene-related peptide Immunoreactivity were seen synapsing on the chalices of type II hair cells and on the surrounding type I hair cells. The primary afferent somata in the vestibular ganglion of Scarpa did not contain calcitonin gene-related peptide Immunoreactivity. Unmyelinated calcitonin gene-related peptide immunoreactive axons passed among the primary afferent fibers in Scarpa's ganglion, and these fibers continued through the subepithelial regions of the vestibular end-organs. The calcitonin gene-related peptide immunoreactive axons ramified to produce numerous calcitonin gene-related peptide immunoreactive terminals throughout the neurosensory epithelium of the maculae and cristae. These data suggest that calcitonin gene-related peptide—mediated modulation of the afferent vestibular system is functionally important.
Subject
Otorhinolaryngology,Surgery
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献