Protective Effect of Electrical Stimulation in the Deafened Guinea Pig Cochlea

Author:

Hartshorn Duane O.1,Miller Josef M.1,Altschuler Richard A.1

Affiliation:

1. From the Kresge Hearing Research Institute, The University of Michigan.

Abstract

The effect of chronic intrascalar electrical stimulation on the spiral ganglion cell survival of the ototoxically deafened guinea pig was investigated. Immediately after ototoxic drug administration, unilateral sinusoidal (1 kHz) charge-balanced electrical stimulation on a 50% duty cycle was administered for 2 hours per day, 5 days per week, at intensities from 0 (control) to 400 μAmp via an implanted scala tympani electrode. The relationship of electrically evoked middle latency response (EMLR) to stimulation protocol and cell survival was studied. At 9 weeks post-drug treatment, the animals were killed and temporal bones were prepared for morphometric analysis of spiral ganglion cell density. The subjects showed essentially complete elimination of outer hair sensory cells, with minimal remaining inner hair cells confined to apical turns. Variable loss of spiral ganglion cell populations was observed, which related to electrical stimulation. In animals that received daily unilaterally electrical stimulation, statistically significant increases in survival of spiral ganglion cells were observed in the stimulated ear, compared to the nonstimulated ear—particularly in basal cochlear regions near the electrode. Spiral ganglion cell density was a function of stimulation current intensity level. Moreover, the slope of the amplitude input/output (I/O) function of the EMLR was found to be dependent on stimulating current level. The effect of stimulation on induced survival may be dependent on a number of mechanisms, including metabolic effects of direct activation of “deafferented” spiral ganglion cells. These data support the suggestion that implantation may provide optimal benefits when performed shortly after deafness.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3