Eradicating Chronic Ear, Nose, and Throat Infections

Author:

Smith Angelia1,Buchinsky Farrel Joel1,Post J. Christopher1

Affiliation:

1. Allegheny General Hospital, Pittsburgh, Pennsylvania, USA

Abstract

Objective. Bacteria can grow as individual, planktonic organisms or as complex biofilm communities that are more resistant to treatment. This review was designed to systematically search to identify recent laboratory studies on eradication of biofilms in otolaryngologic infections to highlight promising advances in biofilm treatment.Data Sources. A systematic electronic literature search of Medline/PubMed, CINHAL, and Web of Science was conducted for articles describing the treatment of biofilm infections in ear, nose, and throat (ENT) diseases through March 2010. English-language articles and articles with an English abstract that focused on biofilm treatment were considered for review.Review Methods. Each included article was reviewed by one of the authors for study design, treatment intervention, and outcome. Data from in vitro and animal studies were considered separately from human studies.Results. A total of 30 articles were identified for this review, including 5 studies that included a human treatment component. In general, antibiotics were relatively ineffective for eradicating biofilm infections. Markedly higher antibiotic dosages were required to reduce biofilm presence compared with doses that were effective in eradicating planktonic bacteria. Mupirocin irrigation, gentian violet, and thiamphenicol glycinate acetylcysteine effectively eradicated biofilms. Physical disruption, surfactants, and probiotics were also shown to be beneficial in both nonhuman and human studies.Conclusion. Eradicating ENT biofilms is difficult when treating single-organism or mixed flora biofilms. Antibiotic therapy is often ineffective against biofilms, and clinical treatment may need to focus on nonantibiotic therapies that reduce, disrupt, or eradicate ENT biofilms.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3