Predicting Postsurgery Nasal Physiology with Computational Modeling

Author:

Frank-Ito Dennis O.1,Kimbell Julia S.2,Laud Purushottam3,Garcia Guilherme J. M.45,Rhee John S.5

Affiliation:

1. Division of Otolaryngology–Head and Neck Surgery, Duke University Medical Center, Durham, North Carolina, USA

2. Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA

3. Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin, USA

4. Biotechnology & Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA

5. Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA

Abstract

Introduction High failure rates for surgical treatment of nasal airway obstruction (NAO) indicate that better diagnostic tools are needed to improve surgical planning. This study evaluates whether computer models based on a surgeon’s edits of presurgery scans can accurately predict results from computer models based on postoperative scans of the same patient using computational fluid dynamics. Study Design Prospective study. Setting Academic medical center. Methods Three-dimensional nasal models were reconstructed from computed tomographic scans of 10 patients with NAO presurgery and 5 to 8 months postsurgery. To create transcribed-surgery models, the surgeon digitally modified the preoperative reconstruction in each patient to represent physical changes expected from surgery and healing. Steady-state, laminar, inspiratory airflow was simulated in each model under physiologic, pressure-driven conditions. Results Transcribed-surgery and postsurgery model variables were statistically different from presurgery variables at α = 0.05. Unilateral nasal resistance and airflow were not statistically different between transcribed-surgery and postsurgery models, but bilateral resistance was significantly different. Cross-sectional average pressures in transcribed surgery trended with postsurgery. Transcribed-surgery prediction errors of postsurgery bilateral resistance were within 10% to 20% and 20% to 30% in 5 and 4 subjects, respectively. Prediction errors for unilateral resistance were <10%, 10% to 20%, and 20% to 30% in 1, 2, and 4 subjects, respectively. Conclusions Computational models with modifications mimicking actual surgery and healing have the potential to predict postoperative outcomes. However, software to effectively translate virtual surgery steps into computational models is lacking. The ability to account for healing factors and the current limited virtual surgery tools are challenges that need to be overcome for greater accuracy.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3