Multispectral Imaging for Automated Tissue Identification of Normal Human Surgical Specimens

Author:

Shenson Jared A.1,Liu George S.1,Farrell Joyce2,Blevins Nikolas H.1

Affiliation:

1. Department of Otolaryngology–Head and Neck Surgery, Stanford University, Stanford, California, USA

2. Department of Electrical Engineering, Stanford University, Stanford, California, USA

Abstract

Objective Safe surgery requires the accurate discrimination of tissue intraoperatively. We assess the feasibility of using multispectral imaging and deep learning to enhance surgical vision by automated identification of normal human head and neck tissues. Study Design Construction and feasibility testing of novel multispectral imaging system for surgery. Setting Academic university hospital. Subjects and Methods Multispectral images of fresh-preserved human cadaveric tissues were captured with our adapted digital operating microscope. Eleven tissue types were sampled, each sequentially exposed to 6 lighting conditions. Two convolutional neural network machine learning models were developed to classify tissues based on multispectral and white-light color images (ARRInet-M and ARRInet-W, respectively). Blinded otolaryngology residents were asked to identify tissue specimens from white-light color images, and their performance was compared with that of the ARRInet models. Results A novel multispectral imaging system was developed with minimal adaptation to an existing digital operating microscope. With 81.8% accuracy in tissue identification of full-size images, the multispectral ARRInet-M classifier outperformed the white-light-only ARRInet-W model (45.5%) and surgical residents (69.7%). Challenges with discrimination occurred with parotid vs fat and blood vessels vs nerve. Conclusions A deep learning model using multispectral imaging outperformed a similar model and surgical residents using traditional white-light imaging at the task of classifying normal human head and neck tissue ex vivo. These results suggest that multispectral imaging can enhance surgical vision and augment surgeons’ ability to identify tissues during a procedure.

Funder

american academy of otolaryngology-head and neck surgery

ARRI Medical, Sony Corp.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3