Effects of Anatomy and Particle Size on Nasal Sprays and Nebulizers

Author:

Frank Dennis O.1,Kimbell Julia S.1,Pawar Sachin2,Rhee John S.2

Affiliation:

1. Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA

2. Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA

Abstract

Objective. To study the effects of nasal deformity on aerosol penetration past the nasal valve (NV) for varying particle sizes using sprays or nebulizers. Study Design. Computed mathematical nasal airway model. Setting. Department computer lab. Subjects and Methods. Particle deposition was analyzed using a computational fluid dynamics model of the human nose with leftward septal deviation and compensatory right inferior turbinate hypertrophy. Sprays were simulated for 10 µm, 20 µm, 50 µm, or particle sizes following a Rosin Rammler particle size distribution (10-110 µm), at speeds of 1, 3, or 10 meters per second. Nebulization was simulated for 1, 3.2, 6.42, or 10 µm particles. Steady state inspiratory airflow was simulated at 15.7 liters per minute. Results. Sprays predicted higher NV penetration on the right side for particle sizes >10 µm, with comparable penetration on both sides at 10 µm. Nearly 100% deposited in the nasal passages for all spray characteristics. Nebulizer predictions showed nearly 100% of particles <6.42 µm and more than 50% of 6.42 µm bypassing both sides of the nose without depositing. Of the nebulized particles that deposited, penetration was higher on the right at 10 µm, with comparable penetration on both sides at 6.42 µm. Spray penetration was highest at 10 µm, with more than 96% penetrating on both sides at 1 and 3 meters per second. Nebulization penetration was also highest at 10 µm (40% on the left, >90% on the right). Conclusion. In the presence of a septal deviation, sprays or nebulizers containing 10-µm particles may have good penetration beyond the NV. Nebulized particles <10 µm are likely to be respirable. Additionally, spray speeds above 3 meters per second may limit penetration.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3