COVID-19 Airway Management Isolation Chamber

Author:

Blood Timothy C.1,Perkins Jonathan N.1,Wistermayer Paul R.2,Krivda Joseph S.3,Fisher Nathan T.4,Riley Charles A.56,Ruhl Douglas S.26,Hong Steven S.16

Affiliation:

1. Department of Otolaryngology–Head and Neck Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, USA

2. Department of Otolaryngology–Head and Neck Surgery, Madigan Army Medical Center, Tacoma, Washington, USA

3. F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA

4. Telemedicine and Advanced Technology Research Center, US Army Medical Research and Development Command, Fort Detrick, Maryland, USA

5. Department of Otolaryngology–Head and Neck Surgery, Fort Belvoir Community Hospital, Fort Belvoir, Virginia, USA

6. Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA

Abstract

Objective During the coronavirus pandemic (COVID-19), health care workers are innovating patient care and safety measures. Unfortunately, many of these are not properly tested for efficacy. The objective of this study was to determine the efficacy of the novel COVID-19 Airway Management Isolation Chamber (CAMIC) to contain and evacuate particulate. Study Design Multi-institutional proof-of-concept study. Setting Two academic institutions: Walter Reed National Military Medical Center (WRNMMC) and Madigan Army Medical Center (MAMC). Subjects and Methods Smoke, saline nebulizer, and simulated working port models were developed to assess the efficacy of the CAMIC to contain and remove ultrafine particles. Particulate counts were collected at set time intervals inside and outside the system. Results With the CAMIC on, smoke particulate counts inside the chamber significantly decreased over time: r(18) = −0.88, P < .001, WRNMMC; r(18) = −0.91, P < .001, MAMC. Similarly, saline nebulizer particulate counts inside the chamber significantly decreased over time: r(23) = −0.82, P < .001, WRNMMC; r(23) = −0.70, P < .001, MAMC. In the working port model, particulate counts inside the chamber significantly decreased over time: r(23) = −0.95, P < .001, WRNMMC; r(23) = −0.85, P < .001, MAMC. No significant leak was detected in the smoke, saline nebulizer, or working port model when the CAMIC was turned on. Conclusions The CAMIC system appears to provide a barrier that actively removes particles from within the chamber and limits egress. Further studies are necessary to determine clinical applicability. The CAMIC may serve as an adjunct to improve health care worker safety and patient outcomes.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3