A Monte Carlo Study of the Effects of Common Method Variance on Significance Testing and Parameter Bias in Hierarchical Linear Modeling

Author:

Lai Xin1,Li Fuli2,Leung Kwok3

Affiliation:

1. Division of Biostatistics, School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China

2. School of Management, Xi’an Jiaotong University, Xi’an, Shaanxi, China

3. Department of Management, City University of Hong Kong, Hong Kong, China

Abstract

Despite that common method variance (CMV) is widely regarded as a serious threat to the validity of findings based on self-reports, there is insufficient research on its confounding influence. We extend Evans’s (1985) pioneering work, and the more recent works by Ostroff, Kinicki, and Clark (2002) and Siemsen, Roth, and Oliveira (2010), to delineate the influence of CMV in a two-level hierarchical linear model based on self-report data. Our simulation results clearly show that in the absence of true effects, it is extremely unlikely for CMV to generate significant cross-level interactions. In fact, if a true cross-level interaction exists, CMV tends to lower the likelihood of its identification and erroneously underestimate the regression coefficient. Our simulation results also show that CMV may lead to a false significant cross-level main effect and overestimate the regression coefficient when no true effect exists. To reduce the probability of Type I errors, we show that raising the significance level to .01, the split sample strategy, and the addition of more CMV contaminated variables are effective in the vast majority of real-life situations and are more effective than increasing the number of groups or persons in each group. Both the split sample strategy and the addition of more CMV contaminated variables are also effective in reducing parameter bias when no true cross-level main effect exists. Trade-offs associated with different strategies are discussed.

Publisher

SAGE Publications

Subject

Management of Technology and Innovation,Strategy and Management,General Decision Sciences

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3