The Effects of the Training Sample Size, Ground Truth Reliability, and NLP Method on Language-Based Automatic Interview Scores’ Psychometric Properties

Author:

Hickman Louis1ORCID,Liff Josh2ORCID,Rottman Caleb2,Calderwood Charles1

Affiliation:

1. Psychology, Virginia Tech, Blacksburg, VA, USA

2. HireVue, Inc., South Jordan, UT, USA

Abstract

While machine learning (ML) can validly score psychological constructs from behavior, several conditions often change across studies, making it difficult to understand why the psychometric properties of ML models differ across studies. We address this gap in the context of automatically scored interviews. Across multiple datasets, for interview- or question-level scoring of self-reported, tested, and interviewer-rated constructs, we manipulate the training sample size and natural language processing (NLP) method while observing differences in ground truth reliability. We examine how these factors influence the ML model scores’ test–retest reliability and convergence, and we develop multilevel models for estimating the convergent-related validity of ML model scores in similar interviews. When the ground truth is interviewer ratings, hundreds of observations are adequate for research purposes, while larger samples are recommended for practitioners to support generalizability across populations and time. However, self-reports and tested constructs require larger training samples. Particularly when the ground truth is interviewer ratings, NLP embedding methods improve upon count-based methods. Given mixed findings regarding ground truth reliability, we discuss future research possibilities on factors that affect supervised ML models’ psychometric properties.

Funder

National Science Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3