Taking It Easy: Off-the-Shelf Versus Fine-Tuned Supervised Modeling of Performance Appraisal Text

Author:

Speer Andrew B.1ORCID,Perrotta James2,Kordsmeyer Tobias L.3

Affiliation:

1. Department of Management & Entrepreneurship, Kelley School of Business, Indiana University, Bloomington, Indiana, USA

2. Department of Psychology, Wayne State University, Detroit, Michigan, USA

3. Department of Psychology & Leibniz Science Campus Primate Cognition, University of Goettingen, Gottingen, Germany

Abstract

When assessing text, supervised natural language processing (NLP) models have traditionally been used to measure targeted constructs in the organizational sciences. However, these models require significant resources to develop. Emerging “off-the-shelf” large language models (LLM) offer a way to evaluate organizational constructs without building customized models. However, it is unclear whether off-the-shelf LLMs accurately score organizational constructs and what evidence is necessary to infer validity. In this study, we compared the validity of supervised NLP models to off-the-shelf LLM models (ChatGPT-3.5 and ChatGPT-4). Across six organizational datasets and thousands of comments, we found that supervised NLP produced scores were more reliable than human coders. However, and even though not specifically developed for this purpose, we found that off-the-shelf LLMs produce similar psychometric properties as supervised models, though with slightly less favorable psychometric properties. We connect these findings to broader validation considerations and present a decision chart to guide researchers and practitioners on how they can use off-the-shelf LLM models to score targeted constructs, including guidance on how psychometric evidence can be “transported” to new contexts.

Publisher

SAGE Publications

Reference46 articles.

1. Brown T. B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D. M., Wu J., Winter C., Hesse C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

2. Words versus numbers: A theoretical exploration of giving and receiving narrative comments in performance appraisal

3. Examining the Role of Narrative Performance Appraisal Comments on Performance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3