Missing Data in Multiple Item Scales: A Monte Carlo Analysis of Missing Data Techniques

Author:

Roth Philip L.,Switzer Fred S.,Switzer Deborah M.1

Affiliation:

1. Clemson University

Abstract

Researchers in many fields use multiple item scales to measure important variables such as attitudes and personality traits, but find that some respondents failed to complete certain items. Past missing data research focuses on missing entire instruments, and is of limited help because there are few variables to help impute missing scores and the variables are often not highly related to each other. Multiple item scales offer the unique opportunity to impute missing values from other correlated items designed to measure the same construct. A Monte Carlo analysis was conducted to compare several missing data techniques. The techniques included listwise deletion, regression imputation, hot-deck imputation, and two forms of mean substitution. Results suggest that regression imputation and substituting the mean response of a person to other items on a scale are very promising approaches. Furthermore, the imputation techniques often outperformed listwise deletion.

Publisher

SAGE Publications

Subject

Management of Technology and Innovation,Strategy and Management,General Decision Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3