GAD antibody-spectrum disorders: progress in clinical phenotypes, immunopathogenesis and therapeutic interventions

Author:

Tsiortou Popianna1,Alexopoulos Harry1,Dalakas Marinos C.2ORCID

Affiliation:

1. Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece

2. Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA; Neuroimmunology Unit, National and Kapodistrian University of Athens, Athens, Greece

Abstract

Antibodies against glutamic acid decarboxylase (GAD), originally linked to stiff person syndrome (SPS), now denote the “ GAD antibody-spectrum disorders” ( GAD-SD) that also include autoimmune epilepsy, limbic encephalitis, cerebellar ataxia and nystagmus with overlapping symptomatology highlighting autoimmune neuronal excitability disorders. The reasons for the clinical heterogeneity among GAD-antibody associated syndromes remain still unsettled, implicating variable susceptibility of GABAergic neurons to anti-GAD or other still unidentified autoantibodies. Although anti-GAD antibody titers do not correlate with clinical severity, very high serum titers, often associated with intrathecal synthesis of anti-GAD-specific IgG, point to in-situ effects of GAD or related autoantibodies within the central nervous system. It remains, however, uncertain what drives these antibodies, why they persist and whether they are disease markers or have pathogenic potential. The review, focused on these concerns, describes the widened clinical manifestations and overlapping features of all GAD-SD; addresses the importance of GAD antibody titers and potential significance of GAD epitopes; summarizes the biologic basis of autoimmune hyperexcitability; highlights the electrophysiological basis of reciprocal inhibition in muscle stiffness; and provides practical guidelines on symptomatic therapies with gamma-aminobutyric acid-enhancing drugs or various immunotherapies.

Publisher

SAGE Publications

Subject

Clinical Neurology,Neurology,Pharmacology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3