Radiomics-based prediction of hemorrhage expansion among patients with thrombolysis/thrombectomy related-hemorrhagic transformation using machine learning

Author:

Liu Junfeng1ORCID,Tao Wendan1,Wang Zhetao2,Chen Xinyue3,Wu Bo1,Liu Ming4

Affiliation:

1. Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China

2. Department of Radiology, West China Hospital, Sichuan University, Chengdu, China

3. CT collaboration, Siemens Healthineers,China

4. Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China

Abstract

Introduction: Patients with hemorrhagic transformation (HT) were reported to have hemorrhage expansion. However, identification these patients with high risk of hemorrhage expansion has not been well studied. Objectives: We aimed to develop a radiomic score to predict hemorrhage expansion after HT among patients treated with thrombolysis/thrombectomy during acute phase of ischemic stroke. Methods: A total of 104 patients with HT after reperfusion treatment from the West China hospital, Sichuan University, were retrospectively included in this study between 1 January 2012 and 31 December 2020. The preprocessed initial non-contrast-enhanced computed tomography (NECT) imaging brain images were used for radiomic feature extraction. A synthetic minority oversampling technique (SMOTE) was applied to the original data set. The after-SMOTE data set was randomly split into training and testing cohorts with an 8:2 ratio by a stratified random sampling method. The least absolute shrinkage and selection operator (LASSO) regression were applied to identify candidate radiomic features and construct the radiomic score. The performance of the score was evaluated by receiver operating characteristic (ROC) analysis and a calibration curve. Decision curve analysis (DCA) was performed to evaluate the clinical value of the model. Results: Among the 104 patients, 17 patients were identified with hemorrhage expansion after HT detection. A total of 154 candidate predictors were extracted from NECT images and five optimal features were ultimately included in the development of the radiomic score by using logistic regression machine-learning approach. The radiomic score showed good performance with high area under the curves in both the training data set (0.91, sensitivity: 0.83; specificity: 0.89), test data set (0.87, sensitivity: 0.60; specificity: 0.85), and original data set (0.82, sensitivity: 0.77; specificity: 0.78). The calibration curve and DCA also indicated that there was a high accuracy and clinical usefulness of the radiomic score for hemorrhage expansion prediction after HT. Conclusions: The currently established NECT-based radiomic score is valuable in predicting hemorrhage expansion after HT among patients treated with reperfusion treatment after ischemic stroke, which may aid clinicians in determining patients with HT who are most likely to benefit from anti-expansion treatment.

Funder

Natural Science Foundation of China

national natural science foundation of china

west china hospital, sichuan university

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3