Progressive failure prediction of short fiber reinforced composites using a multi-scale approach

Author:

Ha Sung Kyu1,Xu Lei1,Zhao Chao1,DeMonte Matthias2

Affiliation:

1. Department of Mechanical Engineering, Hanyang University, South Korea

2. Department of Corporate Research, Robert Bosch GmbH Renningen, Germany

Abstract

A hybrid multi-scale approach combining a virtual mesoscale volume element (representative volume element) and a microscale finite element representative unit cell is developed, for progressive failure prediction of short fiber reinforced composites. The representative volume element represents the fiber orientation and distribution of the whole composites, from which the global mechanical behavior can be estimated. The representative unit cell captures the local mechanical response of each short fiber by transforming global strains to local strains. The constituent strains of the fiber, matrix, and interface are calculated from local strains using representative unit cell. Correlations between mesoscale local strains and microscale constituent strains are established using strain amplification factors. After computing microscale stresses, a progressive damage model is employed to determine the damage status of all constituents. A homogenization method is employed to eliminate damage localization in the matrix and interface. The predicted stress–strain curves are compared with experimental results, and good agreement is also achieved.

Funder

Hanyang University, South Korea

Robert Bosch GmbH, Germany

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3