Affiliation:
1. School of Materials Science and Engineering, Jiangsu University Zhenjiang 212013, China
2. School of Materials Science and Engineering, Jiangsu University Zhenjiang 212013, China,
Abstract
Heterostructural CoFe2O4/Pb(Zr0.52Ti 0.48)O3 composite nanofibers with diameters about 100 nm were prepared by electrospinning. The thermal decomposition process, structure and morphology of the precursor composite fibers and the calcined CoFe 2O4/Pb(Zr0.52Ti0.48)O3 nanofibers were investigated by thermogravimetric and differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). It is found that just the spinel CoFe2O4 (CFO) and perovskite Pb(Zr0.52Ti 0.48)O3 (PZT) phases coexist in the composite CFO/PZT nanofibers obtained at calcination temperature of 950°C. The grain sizes of CFO and PZT increase with the calcination temperature whilst the grain growth process would be limited due to the separation effects for these two phases. When the grain sizes of CFO and PZT in the nanofiber reach about the size range of the nanofiber diameter, these grains are alternatively distributed along the nanofiber length direction and the well-defined heterostructure is formed between these nanograins of CFO and PZT.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献