Evaluation of mechanical properties of 1050-Al reinforced with SiC particles via accumulative roll bonding process

Author:

Fathy Adel1ORCID,Ibrahim Dalia2,Elkady Omayma2,Hassan Mohammed1

Affiliation:

1. Department of Mechanical Design and Production Engineering, Zagazig University, Egypt

2. Manufacturing Department, Central Metallurgical R&D Institute, Egypt

Abstract

Accumulative roll bonding was successfully used as a severe plastic deformation method to produce Al–SiC composite sheets. The effect of the addition of SiC particles on the microstructural evolution and mechanical properties of the composites during accumulative roll bonding was studied. The Al–1, 2 and 4 vol.% SiC composite sheets were produced by accumulative roll bonding at room temperature. Monolithic Al sheets were also produced by the accumulative roll bonding process to compare with the composite samples. Field emission scanning electron microscopy revealed that the particles had a random and uniform distribution in the matrix by the last accumulative roll bonding cycles, and strong mechanical bonding takes place at the interface of the particle matrix. This microstructural evolution led to improvement in the hardness, strength and elongation during the accumulative roll bonding process. It is also shown that by increasing the volume fraction of particles up to 4 vol.% SiC, the yield and tensile strengths of the composite sheets increased more than 1.2 and 1.3 times the accumulative roll-bonded aluminum sheets, respectively. Field emission scanning electron microscopy observation of fractured surface showed that the failure broken of composite was shear ductile rupture.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3