Effects of ceramic particle size on cell attachment and viability in polyurethane-based bone adhesive composites

Author:

Erken Meryem1,Tevlek Atakan1,Hosseinian Pezhman2,Topuz Bengisu1,Aydin Halil Murat13ORCID

Affiliation:

1. Bioengineering Division, Institute of Science, Hacettepe University, Turkey

2. Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Turkey

3. Centre for Bioengineering, Hacettepe University, Turkey

Abstract

Millions of people require bone injury treatment and there have been many methods suggested for the stabilization of bone fractures. The need for the development of new methods is obvious since current stabilization methods are inadequate. Here, we described the development of polyurethane-based bone adhesives composites containing β-tricalcium phosphate ceramics in different sizes and ratios. To characterize the proposed materials, Fourier transform infrared spectroscopy, hydrogen-nuclear magnetic resonance, differential scanning calorimetry analyses together with scanning electron microscopy observations, and micro-computerized tomography imaging were examined. Furthermore, in vitro performance of the produced materials was tested by using MG63 human osteosarcoma cell line, and an ex vivo modeling study was conducted to test the mechanical performance of resulting materials using bovine rib bone. All materials were exhibited high porosity (above 90%) and homogeneous distribution of ceramic particles. Polyurethane scaffolds containing 40% (w/w) 1–2 mm β-tricalcium phosphate were shown the highest compressive strength as 1.34 ± 0.10 MPa. In addition, 85.75% cell viability was recorded according to the cytotoxicity analysis and also the cell proliferation was found highest in the same group. Taken into account the obtained results, the prepared polyurethane-based bone adhesive materials containing ceramics has a great potential to transform into a final product and meet a clinically significant medical need.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3