Mechanical Behavior of Mullite Fiber Reinforced Aluminum Alloy Composites

Author:

Canumalla Sridhar1,Dynan S. A.1,Green D. J.1,Bhagat R. B.1,Pangborn R. N.1

Affiliation:

1. The Pennsylvania State University, University Park, PA 16802

Abstract

Discontinuously reinforced aluminum alloys are viewed as candidate materials for elevated temperature applications because of their attractive high temperature strength properties and wear resistance. The elevated temperature elastic properties and the failure characteristics in relation to the preform flaws, however, have not received much attention in spite of their potential significance. These issues are studied for an aluminum-silicon alloy reinforced with mullite discontinuous fibers, fabricated using the squeeze infiltration technique. The effect of preform flaws (shot) on room temperature strength and ductility is investigated for composites seeded with different amounts of shot. The Young's modulus of the composite exceeds that of the unreinforced alloy over a wide range of temperatures, and the beneficial influence of the fibers is especially significant at elevated temperatures. The primary contribution to the reduction in the modulus of the composite at higher temperatures is shown to be the degradation in the matrix stiffness. Reinforcing the alloy with mullite fibers results in only a moderate improvement in strength at room temperature but the elongation to failure is reduced considerably. Increasing the amount of shot, although not appreciably degrading strength, further reduces the ductility. Shot is found to play an important role in the damage evolution by fracturing early in the loading process, and thus, the composite integrity when subjected to slow stable crack growth, as in fatigue, for example, could be adversely affected.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3