Numerical generation of omnistrain failure envelopes

Author:

Elalfy Mohamed H.12ORCID,Abdalla Mostafa M.1,Abuelfoutouh Nader3

Affiliation:

1. Zewail City of Science and Technology, 6th of October City, Egypt

2. Currently PhD Candidate, Delft University of Technology, Delft, Netherlands

3. Cairo University, Cairo, Egypt

Abstract

Traditional failure criteria for composites are usually formulated in material coordinates and depend on all three inplane stresses, hence failure evaluation depends on the ply angle. The omnistrain failure envelope describes the most critical failure envelope in strain space irrespective of ply orientation. This independence of ply orientation leads to an isotropic failure criterion that depends only on the principal strains. Omnistrain envelopes greatly simplify the task of design and optimisation of composite laminates. This paper proposes a numerical technique to generate omnistrain failure envelopes for different composite failure criteria. The failure index, describing how far a point in strain space is from the failure boundary, is used to describe the failure surface. Assuming convexity of the failure surface, a set of points is generated on the surface, and the convex hull algorithm is used to generate a polygonal approximation of the failure surface. Representing strains in terms of principal strains and the angle between the principal and material coordinates, allows us to eliminate the angle analytically by considering the worst case condition. The omnistrain envelope is thus directly generated from the approximate three-dimensional failure surface. The proposed algorithm does not require analytic expressions of the failure surface. An adaptive algorithm is proposed to generate the omnistrain envelope with relatively small number of points. As demonstration of the proposed algorithm, the omnistrain envelopes for various composite materials are generated for a number of composite failure criteria. The omnistrain envelopes generated for the Tsai-Wu criteria accurately match to existing analytic expressions.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3