Shape Control of Composite Plates and Shells with Embedded Actuators. II. Desired Shape Specified

Author:

Koconis David B.1,Kollår Låszló P.1,Springer George S.1

Affiliation:

1. Department of Aeronautics and Astronautics Stanford University Stanford, CA 94305

Abstract

The changes in shapes of fiber-reinforced composite beams, plates and shells affected by embedded piezoelectric actuators were investigated. An analytical method was developed to determine the voltages needed to achieve a specified desired shape. The method is formulated on the basis of mathematical models using two-dimensional, linear, shallow shell theory including transverse shear effects which are important in the case of sandwich construction. The solution technique is a minimization of an error function which is a measure of the difference between the deformed shape caused by the application of voltages and the desired shape. A computationally efficient, user-friendly computer code was written which is suitable for performing the numerical calculations. The code, designated as SHAPE2, gives the voltages needed to achieve specified changes in shape. To validate the method and the computer code, results generated by the code were compared to existing analytical and experimental results. The predictions provided by the SHAPE2 code were in excellent agreement with the results of the other analyses and data.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3