Effects of vacuum pressure, inlet pressure, and mold temperature on the void content, volume fraction of polyester/e-glass fiber composites manufactured with VARTM process

Author:

Kedari Vishwanath R.1,Farah Basil I.1,Hsiao Kuang-Ting1

Affiliation:

1. Department of Mechanical Engineering, University of South Alabama, AL, USA.

Abstract

Vacuum-assisted resin transfer molding (VARTM) process is one of the liquid composite molding (LCM) processes aimed at producing high-quality composite parts. The void content and fiber volume fraction of a VARTM part can be affected by many parameters and is critical to the mechanical properties and the quality of the part. In this paper, a series of experiments were conducted with a heated dual pressure control VARTM setup for investigating the effects of vacuum pressure, inlet pressure, and mold temperature on the void content and fiber volume fraction of polyester/E-glass fiber composite. It was found that stronger vacuum and higher mold temperature can better control and increase the fiber volume fraction; however, such a combination of strong vacuum and high mold temperature may also require a reduced inlet pressure for minimizing the void content. The need of pressure reduction can be explained with the compatibility between Darcy's flow and capillary flow in the fiber preform and can be calculated based on the room temperature VARTM results. The experimental results suggest that high mold temperature, high vacuum, and appropriately reduced inlet pressure can produce a VARTM part with high fiber volume fraction and low void content.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3