Statistical design of polymeric composites reinforced with banana fibres and silica microparticles

Author:

Silva LJ1,Panzera TH1,Velloso VR1,Rubio JCC2,Christoforo AL1,Scarpa F3

Affiliation:

1. Department of Mechanical Engineering, Federal University of São João Del Rei – UFSJ, Brazil

2. Department of Mechanical Engineering, Federal University of Minas Gerais – UFMG, Brazil

3. Advanced Composites Centre for Innovation and Science, University of Bristol, UK

Abstract

The study describes a design of experiment analysis performed on hybrid polymeric composites reinforced with unidirectional banana fibres and silica microparticles. Maleic anhydride was also evaluated as a chemical additive to improve the adhesion between phases. A full factorial design (2231) and the analyses of variance were performed to identify the significance of the microstructure constituents against different mechanical and physical properties in a total population of 120 biocomposites samples. The microstructure parameters considered were fibre volume fraction (30% and 50%), silica addition (0%, 20 wt% and 33 wt%) and maleic anhydride addition (0% and 2 wt%). The mechanical and physical properties of the composite considered as factorial and analyses of variance responses were the apparent density, apparent porosity, water absorption, modulus of elasticity and mechanical strength under tensile and flexural loading. The design of experiment analysis has shown that the volume fraction of the fibres significantly affects all responses, with the composite made from 30% of banana fibres exhibiting superior mechanical strength and modulus of elasticity. While the addition of silica has featured a statistically noticeable contribution to the porosity and the water absorption, the presence of the particles did not provide any significant enhancement to the composites mechanical strength. Maleic anhydride showed a significant contribution to the apparent density, water absorption and flexural modulus, not improving the adhesion between phases, with a consequent decrease of the Young’s modulus and increase of the water absorption within the composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3