Electrical properties of extruded milled carbon fibre and polypropylene

Author:

Radzuan Nabilah Afiqah Mohd1,Sulong Abu Bakar12,Rao Somalu Mahendra1

Affiliation:

1. Fuel Cell Institute, Universiti Kebangsaan Malaysia, Malaysia

2. Department of Mechanical and Materials Engineering, Universiti Kebangsaan Malaysia, Malaysia

Abstract

A milled carbon fibre and polypropylene polymer composite at high filler loading was developed to produce conductive polymer composites for high conductive applications. Current research of conductive polymer composite material has reported about in-plane conductivity that was often higher than through-plane conductivity, which contradicted with the target of applications that required higher electrical conductivity in the through-plane direction. Therefore, electrical conductivity in parallel and transverse to extrusion directions were investigated. The general-effective media and modified fibre contact model were adapted to predict the electrical conductivity of the composite material. The experimental conductivity data of polypropylene/milled carbon fibre composites for transverse and parallel directions were not correlated with the general-effective media model with 2.009 and 0.663 S/cm, respectively, at the highest filler loading of 80 wt.%. This disagreement was due to various critical exponential, t values (2–3.25) that were obtained in this study. However, the modified fibre contact model seemed to have good agreement with the experimental data in the parallel to extrusion direction. This model was unable to predict electrical conductivity in the transverse direction due to lack of orientation occurring in that direction. The electrical conductivity increased as the filler loading increased as explained in percolation theory. Predicting the electrical conductivity of conductive polymer composites material is still in the preliminary stages where the researcher often obtains fluctuating agreement with the experimental values. Thus, contact between filler and orientation is considered as the main factor that influences the electrical conductivity and mechanical strength of the conductive polymer composites material.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3