Effects of Stacking Sequence on the Impact Resistance of Carbon Fiber Reinforced Thermoplastic Toughened Epoxy Laminates

Author:

Strait L.H.1,Karasek M.L.1,Amateau M.F.1

Affiliation:

1. Materials Science Department Applied Research Laboratory State College, PA 16804

Abstract

Few comprehensive studies on the effects of stacking sequence and rein forcement form (unidirectional versus woven) have been published to date and much of the available data is contradictory. In the present study, instrumented impact tests were used to characterize such effects for carbon fiber reinforced thermoplastic toughened epoxy laminates. Impact resistance was characterized in terms of load and energy parameters measured during penetration tests. These parameters were related to damage in the lami nates by conducting rebound tests followed by ultrasonic imaging and microscopy. The results clearly demonstrated a relationship between the onset of damage and the first peak in the load versus deflection plots obtained in the penetration tests. No major effects of stacking sequence or reinforcement form were apparent in terms of the energy required for the onset of damage in the laminates. Energy to maximum load was found to be highly de pendent on stacking sequence. Substitution of woven reinforcement for unidirectional tape in a quasi-isotropic layup resulted in a substantial decrease in the energy to maximum load. The results in terms of peak load showed similar trends. No effects of stacking se quence or reinforcement form were observed in terms of energy after peak load. It is ap parent from this work that stacking sequence and reinforcement form can have significant effects on impact resistance particularly at higher impact energies.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Reference25 articles.

1. New York, NY: American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc.

2. Impact Induced Fracture in a Laminated Composite

3. Matrix Cracking in Impacted Glass/Epoxy Plates

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3