Time-dependent thermo-mechanical behavior of graphene epoxy nanocomposites: Creep, relaxation, compression

Author:

Birkan Besim Emre1,Bakbak Okan1ORCID,Colak Ozgen1ORCID,Acar Alperen1

Affiliation:

1. Department of Mechanical Engineering, Yıldız Technical University, Istanbul, Turkey

Abstract

The purpose of this work is twofold: the manufacturing of functionalized graphene (f-GNF) epoxy nanocomposite and time-dependent thermomechanical characterization of epoxy and nanocomposite. To accomplish these purposes, f-GNF-epoxy nanocomposites are produced for two different graphene fractions (0.1 and 0.5 wt%) using the non-covalent functionalization and three roll milling (3RM) dispersion techniques. Dynamic Mechanical Analysis (DMA) is performed to determine temperature-dependent viscoelastic properties. Quasi-static compression, creep and relaxation tests are conducted at two different temperature values: 65°C and 120°C. As expected, experimental results revealed that the elasticity modulus and yield stress decrease with increasing temperature. It is also determined that the reinforcing effect of graphene reduces with increasing temperature. An important conclusion revealed, through the compression, creep, and relaxation test results that graphene has no reinforcing effect at 120°C but has a weakening effect on total thermo-mechanical behavior.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the cure shrinkage–induced warpage of epoxy molding compound;International Journal of Mechanical Sciences;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3