High velocity impact behavior of Hybrid composite under hydrostatic preload

Author:

Kumar Vishnu Vijay12ORCID,Rajendran Suresh2,Balaganesan G2,Surendran S2,Selvan Arul2,Ramakrishna Seeram1

Affiliation:

1. College of Design and Engineering, National University of Singapore, Singapore

2. Indian Institute of Technology, Madras, India

Abstract

The Hybridization concept creates a niche within the composite segment to customize materials for specific applications with reduced cost without sacrificing strength and durability. The composite structures develop strain during continuous operation, and any sudden impact on these preloaded parts might result in catastrophic accidents. Studying impact response during such conditions is essential in designing and developing structures. This study experimentally investigates the high velocity impact response of Hybrid (Carbon-Glass) composite under normal and hydrostatic preload conditions. Mechanical tests involving Tensile, Izod, and Charpy are conducted. High velocity impact testing is carried out with a vertical single-stage gas gun with additional provision for hydrostatic preloading. An oscilloscope with a laser source measures the initial velocity, and Photogrammetry using a high-speed camera measure the residual velocity of a projectile. The mechanical test results suggest that Hybridization resulted in a significant property enhancement. The high velocity impact resistance and energy absorption are higher for Hybrid under both normal and preloaded impact.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3