Dynamic effects of a single fiber break in unidirectional glass fiber-reinforced polymer composites: Effects of matrix plasticity

Author:

Ganesh Raja12,Sockalingam Subramani1,Gillespie John W1234

Affiliation:

1. Center for Composite Materials, University of Delaware, USA

2. Department of Mechanical Engineering, University of Delaware, USA

3. Department of Materials Science and Engineering, University of Delaware, USA

4. Department of Civil and Environmental Engineering, University of Delaware, USA

Abstract

In a unidirectional composite under static tensile loading, breaking of a fiber is shown to be a locally dynamic process, leading to stress concentrations in the matrix and neighboring fibers and debonding of the interface, which can propagate at high speed over long distances. In our previous work, a fiber break within a two-dimensional fiber array embedded in elastic epoxy matrix (with cohesive interface) was modeled to quantify the effects of these dynamic stresses. The results indicated that the elastic limit of the polymer matrix can be exceeded. In this study, the effects of matrix plasticity on dynamic stress concentrations due to a single fiber break are investigated. For the range of matrix yield stresses considered, the dynamic stress concentrations are significantly higher than corresponding values predicted by a quasi-static model with a pre-broken fiber. Based on the ratio of shear yield strength of the matrix and mode II peak traction of the interface cohesive law, two distinct regimes of damage are shown to exist. Only matrix yielding occurs when this ratio is less than 1.0, while both interfacial debonding and matrix yielding occur when it is greater than 1.0. At higher fiber break strengths, where the elastic matrix model predicts unstable interfacial debonding, reduction in matrix yield strength leads to a transition to stable debonding and arrest. Reducing the matrix yield strength also leads to a lowering of the peak dynamic stress concentrations in adjacent fibers, while spreading the stress concentrations over a larger volume of the composite microstructure.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3