Evaluation of First Ply Failure in a Three-Dimensional Load Space

Author:

Zocher M. A.1,Allen D. H.1,Groves S. E.2,Feng W. W.2

Affiliation:

1. Center for Mechanics of Composites, Texas Engineering Experiment Station, Texas A&M University, College Station, 1X 77843

2. Lawrence Livermore National Laboratories, Livermore, CA 94550

Abstract

Numerically generated failure envelopes for several three-dimensional failure criteria are presented and compared to experimental data. These envelopes are developed through finite element analysis and are based on first ply failure (FPF). The experimental data are based on ultimate failure of filament wound tubes constructed from Toray 1000/DER332-T403 and loaded in various combinations of axial traction (both tension and compression), internal pressure, and torsion. All tubes have a layup of [± 1.5, ± 45, ± 89] T. Five three-dimensional failure criteria are considered: max-stress, max-strain, one proposed by Tsai, and two recently proposed by Feng. In addition to the three-dimensional failure criteria evaluated, the finite element results are used in conjunction with classical lamination theory to test the predictive capability of some of the more common two-dimensional failure criteria (max-strain, Tsai-Hill, and Tsai-Wu). None of the predicted envelopes compares well with the experimental data; thereby illustrating the need for progressive failure analysis in structures subjected to complex stress states. It is shown that it is possible to improve the accuracy of at least one of the three-dimensional failure criteria through a very minor modification of the theory.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3