Progressive failure simulation in laminated composites under fatigue loading by using discrete damage modeling

Author:

Iarve Endel V12,Hoos Kevin2,Braginsky Michael3,Zhou Eric3,Mollenhauer David H4

Affiliation:

1. Mechanical and Aerospace Engineering, University of Texas at Arlington, USA

2. Institute for Predictive Performance Methodologies, University of Texas at Arlington Research Institute, USA

3. Multiscale Mechanics and Polymers, University of Dayton Research Institute, USA

4. Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, USA

Abstract

The discrete damage modeling method is extended for progressive failure analysis in laminated composites under fatigue loading. Discrete damage modeling uses the regularized extended finite element method for the simulation of matrix cracking at initially unknown locations and directions independent of the mesh orientation. A material history variable in each integration point is introduced and updated after each loading increment, corresponding to certain load amplitude and number of cycles. The accumulation of the material history variable is governed by Palmgren-Miner’s rule. Cohesive zones associated with mesh-independent cracks are inserted when the material history parameter reaches the value of 1. Cohesive zone model consistently describing crack initiation and propagation under fatigue loading without any assumption of initial crack size is proposed. The fatigue properties required for matrix failure prediction include shear and tensile S-N curves as well as Mode I and II Paris law parameters. Tensile fiber failure is assumed unaffected by fatigue. All input data required for model application are directly measured by ASTM tests except tensile fiber scaling parameter and compression fiber failure fracture toughness, which were taken from literature sources. The model contains no internal calibration parameters. Fatigue damage extent, stiffness degradation and residual tensile and compressive strength of IM7/977-3 laminates have been evaluated. Three different layups, [0/45/90/-45]2S, [30/60/90/-60/-30]2S and [60/0/-60]3S, were modeled and tested. The predictions captured most experimental trends and showed good agreement with X-ray CT damage assessment; however, significant further work is required to develop reliable methodology for quantitative composite durability prediction.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3