Mechanical characterization of anisotropy on a carbon fiber sheet molding compound composite under quasi-static and fatigue loading

Author:

Nony-Davadie C1,Peltier L1,Chemisky Y1,Surowiec B2,Meraghni F1ORCID

Affiliation:

1. LEM3-UMR CNRS 7239-Arts et Métiers ParisTech, France

2. Plastic Omnium Auto Exterior, Sigmatech, France

Abstract

The paper presents an experimental analysis of the anisotropic effects of the structural advanced carbon fiber sheet molding compound composites (AC-SMCs) subjected to quasi-static and fatigue loading. Two configurations of AC-SMC composites (randomly oriented and highly oriented) considering three different orientations (0°, 45°, 90°) with respect to the material thermo-compression flow direction are investigated under quasi-static and fatigue tensile loading. The effects of fibers orientation induced by the thermo-compression process are analyzed in terms of ultimate strength, elastic modulus, and macroscopic damage corresponding to the stiffness reduction, and related to the quasi-static and fatigue behavior. For both loading conditions, the macroscopic damage of AC-SMC randomly oriented exhibits a two-stage evolution without any damage saturation prior to the samples' failure. In addition, the difference between the highly oriented and randomly oriented configurations is pronounced especially for the 45° and 90° orientations. Post-mortem X-ray radiography and SEM observations show that damage mechanisms such as microcracks appear between and inside bundles, and their occurrence depends on the sample orientation. Experimental findings are compared with those of an equivalent advanced glass fiber reinforced sheet molding compounds composite. The degree of anisotropy is more pronounced for AC-SMC. Indeed, the dependency of the behavior during the manufacturing process induces orientation. Furthermore, the damage evolutions of the two types of SMCs have displayed different kinetics, especially for the saturation stage which is not observed for the AC-SMC composite.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3