Cyclic pull-out test of single PVA fibers in cementitious matrix

Author:

Lee Seong-Cheol1,Shin Kyung-Joon2,Oh Byung-Hwan3

Affiliation:

1. Department of Civil Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada.

2. Department of Civil Engineering, Chungnam National University, Daejeon 305-764, Korea.

3. Former Department of Civil Engineering, Seoul National University, San 56-1, Shinlim-dong, Gwanak-gu, Seoul 151-744, Korea.

Abstract

Recently, many studies have been conducted to examine the behavior of fiber-reinforced concrete (FRC) subjected to cyclic loading. However, cyclic and fatigue behavior is so complex that the mechanism of degradation cannot be cleared just by simple mechanical tests such as flexural and tensile tests of FRC specimens that measure typical overall behavior of the material. Besides these kinds of investigations, the individual behavior of the constituents and the interaction between them need to be investigated to reveal the cyclic degradation and fatigue mechanism of FRC detail. So far, only a few experiments have been devoted to the cyclic degradation of fibers in FRC. Therefore, cyclic pull-out behavior of single fiber is investigated in this study. A main objective of this article is to propose a test method for a cyclic pull-out test of a single fiber and to investigate the degradation behavior of single PVA fibers under cyclic loading conditions. Single PVA fibers were tested using quasi-static and cyclic loading methods, and the test results revealed the bridging load of PVA fibers decreases continuously and it become less than half the initial load during the cyclic loading process.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3