Fatigue accumulated damage in notched quasi-isotropic composites under high-temperature conditions: A discussion on the influence of matrix nature on the stress energy release rate

Author:

Vieille B1

Affiliation:

1. Groupe de Physique des Matériaux, INSA Rouen, France

Abstract

In order to investigate the contribution of matrix nature to the fatigue behaviour, the purpose of the present work is to establish the correlation between material toughness and macroscopic damage accumulation during tensile cyclic loading in the brittle (C/epoxy) and ductile (C/Polyphenylene sulfide) matrix systems. More specifically, this article presents a fracture mechanics-based approach to compute the strain energy release rate during fracture along with the macroscopic transverse crack growth in fatigue. The knowledge of energy-absorbing processes is important as they are responsible for the toughness of the composite. Woven-ply laminates are characterised by matrix-rich regions which may stop or slow down the growth of fatigue cracks by absorbing the mechanical energy through local plastic deformations at the cracks tip depending on matrix nature. With respect to C/epoxy laminates, the local plastic deformations at the cracks tip are prominent in highly ductile composite systems (e.g. C/Polyphenylene sulfide), and ultimately results in fatigue behaviour virtually independent of the applied stress level under high temperatures T > Tg. To evaluate the influence of matrix ductility and toughness on fatigue damage, a damage variable d based on the measurement of longitudinal stiffness at each cycle was used. A model derived from a Paris law and a fracture mechanics criterion were combined to: (i) evaluate the fatigue crack growth – (ii) compare the changes in the strain energy release rate G and the macroscopic damage d during cyclic loading. Macroscopic damage appears to be well correlated with the strain energy released during fracture.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3