Investigation of tensile and flexural behavior of biaxial and rib 1 × 1 weft-knitted composite using experimental tests and multi-scale finite element modeling

Author:

Hessami Reza1ORCID,Yazdi Aliasghar Alamdar1,Mazidi Abbas2

Affiliation:

1. Department of Textile Engineering, Yazd University, Iran

2. Department of Mechanical Engineering, Yazd University, Iran

Abstract

In this study, tensile and flexural behavior of biaxial and rib weft-knitted composite is obtained numerically and experimentally. Multi-scale finite element modeling is employed to simulate the tensile and flexural behavior of composite samples. In the finite element modeling, the geometry of a unit cell of each fabric is initially modeled in ABAQUS software, and then periodic boundary conditions were applied to a unit cell. The stiffness matrix for each structure was obtained by a python code via meso scale modeling and used as input data for the macro modeling. To validate the numerical model, two types of weft-knitted fabrics (rib 1 × 1 and biaxial fabrics) are produced by a flat weft knitting machine. Epoxy resin is used to construct composite by the vacuum injection process (VIP). After that, the tensile and three-point bending tests were applied to composite samples. The experimental results showed that tensile strength and tensile modulus of biaxial composites are greater than rib composites, in both wale and course directions. Moreover, in three-point bending test, biaxial composite showed more strength and more stiffness in comparison to rib composite. Finite element results were compared to experimental results in tensile and bending tests. The results showed that good agreement with experimental results in the linear section of tensile and flexural behavior of composites. Consequently, the current multi-scale modeling can be used to predict the stiffness matrix and mechanical behavior of complex composite structures such as knitted composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3