Simultaneously improving fracture toughness and impact resistance of the rapid-curing CFRP via insert with MAM/EP resin film

Author:

Liu Yuhang1ORCID,Min Wei1,Qi Liangliang1,Muhuo Yu12,Sun Zeyu13ORCID

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China

2. Shanghai Key Laboratory of Lightweight Structural Composites, Donghua University, Shanghai, China

3. Center for Civil Aviation Composites, Donghua University, Shanghai, China

Abstract

In this research, a resin film of the MAM/EP blend curing system containing the triblock copolymer polymethyl methacrylate- b-poly-n-butyl acrylate- b-polymethyl methacrylate (MAM) was prepared. Such resin film was inserted into the interlaminar of rapid-curing composites to simultaneously improve both mode I, mode II fracture toughness and impact resistance. Both the Mode I and Mode II interlaminar fracture toughness of the composites were carefully investigated as a function of MAM content of the MAM/EP resin film (0, 20 and 40 phr@50 μm). A maximum improvement up to 109% and 70.2% on Mode I and Mode II fracture toughness, respectively was obtained with the introduction of the 40 phr@50 μm compared to the laminates with the introduction of the 0 phr@50 μm. Analysis of the fracture surfaces of the laminates elucidated that the distinctive improvement of the interlaminar fracture toughness could be attributed to the characteristic interlaminar structures of MAM in epoxy resin by self-assembly. The interleaved laminates also displayed an increase of 26.7% for the compression after impact (CAI) properties, and showed excellent impact resistance. The interlaminar shear strength (ILSS) of the composite was thereafter explored, which indicated slight enhancements to the strengths.

Funder

Fundamental Research Funds for the Central Universities

The APC was funded by the Visiting Scholar Fund of the State Key Laboratory of Fiber Material Modification

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3