Some improvements on Sun–Chen’s one-parameter plasticity model for fibrous composites – Part I: Constitutive modelling for tension–compression asymmetry response

Author:

Wang Jie1,Xiao Yi1

Affiliation:

1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China

Abstract

Herein, a one-parameter plasticity model proposed by Sun and Chen [Sun CT and Chen JL. A simple flow rule for characterizing nonlinear behavior of fiber composites. J Compos Mater 1989; 23: 1009–1020] demonstrates features that make it highly attractive for characterizing non-linear responses of fibrous composites. However, a detailed exploitation of the model’s potential has been halted by unresolved problems that include tension–compression asymmetry in stress–strain curves, FEM implementation as well as optimal parameters determination, which are addressed in this investigation as well as proposed solutions are presented. The major focus in Part I of this three-part study was devoted to developing a simple model for predicting the tension–compression asymmetry in stress–strain curves for fibrous composites, which was based on Sun and Chen’s one-parameter plasticity model. A generalized Hill yield criterion was proposed from combinations of the Drucker–Prager yield criterion that considers the effect of hydrostatic pressure for isotropic materials and the Hill yield criterion suitable for anisotropic materials. By incorporating the yield strength-differential effect on the plastic flow rule in composite laminates, the one-parameter plasticity model was extended to a strength-differential effect-incorporated model. The improved model has been calibrated and validated by off-axis tension and compression tests on unidirectional carbon/epoxy (IM600/Q133) composite laminates. Results verified that the proposed model captured the complex tension–compression asymmetry in observed non-linear responses of stress–strain curves.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3